
Computer Science
ewe
ELECTE
APR 7 1995

C

Teaching Mathematics to Software Engineers

Jeannette M. Wing

February 21, 1995

CMU-CS-95-118

Accesion

NTIS c:
DTIC L
Unannou
Justificat:

* — j
Approved tor puoiis reieojw v

Dütnauiicn Uxüiautsd ^**

Carnegie
Mellon

19950405 014
DTIC QUALITY INSPECTED 1

Teaching Mathematics to Software Engineers

Jeannette M. Wing

February 21, 1995

CMU-CS-95-118

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

□
D

BySL< \ DJLXÖ- i>CL
Distribution/

Availability Codes

Dist

qv\

Avail and/or
Special

This paper will appear in the Proceedings of the Fourth International Conference on Algebraic

Methodology and Software Technology (AMAST '95). It is the basis of an invited talk for

AMAST's Education Day, July 3, 1995, in Montreal, Canada.

Abstract

Based on my experience in teaching formal methods to practicing and aspiring software engineers,
I present some of the common stumbling blocks faced when writing formal specifications. The most
conspicuous problem is learning to abstract. I address all these problems indirectly by giving a list
of hints to specifiers. Thus this paper should be of interest not only to teachers of formal methods
but also to their students.

This research is sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, and the Advanced Research Projects Agency (ARPA) under grant number F33615-93-1-1330. Views
and conclusions contained in this document are those of the authors and should not be interpreted as necessarily
representing official policies or endorsements, either expressed or implied, of Wright Laboratory or the United States
Government.

Keywords: formal specification, software engineering, education, discrete mathematics, math-
ematical logic, algebraic specifications, Z, Larch

1. Context: Teach What to Whom?

Let me explain this paper's title, and in particular what I mean by "mathematics" and "software
engineers." By "mathematics" I mean the mathematical foundations and techniques that underlie
a wide range of formal methods. The foundations are mathematical logic and discrete mathematics.
The techniques are specification and reasoning. Specification is a synthesis process involving the
construction of a mathematical model or theory from an informally described set of concepts
(e.g., an English-language description of a system's requirements). In this paper, when I say
"specify" ("specification") I mean "formally specify" ("formal specification"). Reasoning is an
analysis process involving proving properties about a system from a formal specification; the proofs
themselves may be informal or formal, but their logical basis is formal. This paper focuses more
on specification than reasoning.

By "software engineer" I mean to include practicing software engineers in industry, who may be
furthering their education by taking courses while on the job, or taking a leave from work to get
an advanced (typically, Master's) degree; graduate students who design and build large software
systems, typically as an integral component of their Ph.D. thesis work; and undergraduate students
who want to learn some basic software engineering principles before working at their first job.

My target teaching audience is not students of mathematics but students who are or will be
software engineers. What and how to teach mathematical foundations to them differs from the
contents and methods taught in traditional courses on logic and discrete mathematics. Indeed this
observation led a group of us (Alan Brown, David Garlan, Daniel Jackson, James Tomayko, and me)
to redesign the core curriculum of the Carnegie Mellon Master's of Software Engineering Program
to include a course called "Models of Software Systems" [7, 6]. This course aims exactly at teaching
the mathematical foundations and techniques relevant to the practice of software engineering.

This paper is based on the following experiences, starting with the most influential:

•

•

•

•

•

Co-teaching (with David Garlan) the CMU MSE "Models" course during the Fall 1993 and
Fall 1994 semesters. A total of thirty-six Master's and advanced undergraduate students
enrolled. Z [19] and CSP [8] are the predominate formal methods used.

Working one-on-one with CMU Ph.D students, mine and those of other faculty members,
in the "Programming Systems" area. I have worked closely with or served as specification
consultant for over twenty students in the past ten years.

Working one-on-one with a Japanese industrial visitor, a software engineer in control systems,
this past year. He is using the Larch/C Interface Language (LCL).

Co-teaching (with Daniel Jackson) the CMU MSE "Analysis of Software Artifacts" course
during the Spring 1995 semester. Students use the formalisms introduced in "Models" and
analyze specifications of pieces of real systems. Fifteen students are enrolled.

Teaching a Ph.D.-level graduate course at CMU, "Reasoning about Concurrent and Dis-
tributed Systems," Spring 1994, based on the MIT course, "Principles of Computer Systems,"
developed by Butler Lampson and William Weihl [12]. Students use the specification lan-
guage Spec (roughly a combination of Modula-3 and Dijkstra's guarded command language)

to describe system interfaces. About ten students either were enrolled or audited during the
course of the term.

• Co-teaching (with John Guttag) a graduate course at MIT, "Specifications in Software De-
velopment" during the Fall 1992 semester. We covered Larch [9] in some detail. Ten Master's
and Ph.D. students enrolled.

• Working as a laboratory assistant (while I was a graduate student) for the industrial short
course, "Design and Implementation of Modular Software." Barbara Liskov and John Guttag
were the instructors. We worked together on four incarnations of this course during 1980-
1982. We briefly covered an algebraic specification technique.

• Teaching (Spring 1993) and co-teaching (with Bernd Bruegge, Spring 1991) the CMU under-
graduate software engineering course. The major part of this course is an integrated class
project whose subcomponents are developed by separate teams. Students are expected to
write stylized, informal interface specifications.

Over the years I have been accumulating specification hints that I give to students in response to
common problems and recurrent questions. So, I will use an indirect way to explain to teachers of
formal methods the lessons I have learned; in the following four sections I speak directly to students
of formal methods and exemplify the kinds of stumbling blocks they encounter when first using
formal methods. Herein I use "you" to refer to the reader who is the software engineer attempting
to write a formal specification.

I've broadly categorized the issues along the following dimensions:

• Figuring out why you are going through this specification effort (Section 2). What do you
hope to get out of using formalism?

• Figuring out what of the system you want to specify (Section 3).

• Figuring out how to specify (Section 4). The most important hurdle to overcome is learning
to abstract. I also give specific suggestions on how to make incremental progress when writing
a specification.

• Figuring out what to write down (Section 5). Learn a formal method's set of conventions but
do not feel constrained by them. Also, we all make logical errors sometimes; I point out some
common troublespots in getting the details of a specification right.

I will illustrate my points with examples, usually in Z or Larch. Many actually make more than
one point.

I close with a discussion of challenges to the technical community in Section 6.

2. Why Specify?

You should first ask yourself this question, "Why specify?" You might choose to specify because you
want additional documentation of your system's interfaces, you want a more abstract description

of your system design, or you want to perform some formal analysis of your system. What you
write should be determined by what it is you want to do with your specification.

You should then ask yourself "Why formally specify?" Your answer determines what is to be
formalized, what formal method to use, and what benefits you expect from a formal specification
not attainable from just an informal one. When I have asked this question of a software engineer,
here are the kinds of responses I have heard:

• Showing that a property holds globally of the entire system.

- I want to characterize the "correctness condition" I can promise the user of my system.

- I want to show this property is really a system invariant.

- I want to show my system meets some high-level design criteria.

• Error handling

- I want to specify what happens if an error occurs.

- I want to specify the right thing happens if an error occurs.

- I want to make sure this error never occurs.

• "Completeness"

- I want to make sure that I've covered all the cases, including error cases, for this protocol.

- I'd like to know that this language I've designed is computationally complete.

• Specifying interfaces.

- I'd like to specify a hierarchy of C++ classes.

- I'd like a more formal description of this system's user interface.

• Getting a handle on complexity.

- The design is getting too complicated. I can't fit it all in my head. I need a way to
think about it in smaller pieces.

• Change control.

- Everytime I change one piece of code I need to know what other pieces are affected. I'd
like to know where else to look without looking at all modules, without looking at all
the source code.

Judicious use of mathematics, e.g., by applying formal methods, can help address all these
problems to varying levels of detail and rigor.

3. What to Specify?

Formal methods are not to the point where an entire large, software system can be formally
specified. You may be able to specify one aspect of it, e.g., its functionality or its real-time behavior;
you may be able to specify many aspects of a part of it, e.g., specifying both functionality and
real-time behavior of its safety-critical part. In practice, you may care to specify only one aspect
of a part of a system anyway.

In writing a specification, you should know whether the specification is describing required or
permitted behavior. Must or may? Since a specification can be viewed as an abstraction of many
possible, legitimate implementations, you might most naturally associate a specification with de-
scribing permitted behavior. An implementation may have any of the behaviors permitted by the
specification, but the implementor is not required to realize all. For example, a nondeterministic
choose operation specified for sets will have a deterministic implementation. However, the expres-
sion "software system requirements" suggests that a customer may in fact require certain behavior.
For example, in specifying an abstract data type's interface, the assumption is that all, not some
subset, of the operations listed must be implemented.

Once it is clear what you hope to gain from the specification process, you can turn to determining
exactly what should be formalized.

In increasing order of level of detail, you might want to formalize a global correctness condition
for the system, one or more system invariants, the observable behavior of a system, or properties
about entities in a system.

Correctness Conditions

You usually have some informal notion of a global correctness condition that you expect your
system to uphold. It might be something as standard as serializability, cache coherence, or deadlock
freedom. Or, it might be very specific to the protocol or system at hand. If it is standard, then
very likely someone else has developed a formal model for characterizing a system and a logic such
that the correctness condition can be formally stated and proven. E.g., serializability has been
thoroughly studied by the database community from all angles, theoretical to practical. If your
correctness condition can be cast in terms of a well-known theory, it pays to reuse that work and
not invent from scratch.

If it is not standard then an informal statement of the correctness condition should drive the
normalization of the system model and expression of the correctness condition. For example, in
work by Mummert et al. [16], the authors started with this informal statement of cache coherence
for a distributed file system:

If a client believes that a cached file is valid then the server that is the authority
on that file had better believe that the file is valid.

They developed a system model (a state machine model) and logic (based on the logic of
authentication [4]) that enabled them to turn the informal statement into the following formal
statement:

For all clients C, servers S, and objects d for which S is the repository,
if C believes valid(dc) then Sbelieves valid(dc)

where clients, servers, objects, repository, believes and valid are formally defined concepts. The
point is that the formal statement does not read too differently from the informal one.

Keep in mind this rule-of-thumb when formalizing from an informal statement: Let the things
you want to describe formally drive the description of the formal model. There is a tendency to
let the formal method drive the description of the formal model; you end up specifying what you
can easily specify using that method. That is fine as far as it goes, but if there are things you
cannot say or that are awkward to express using that method, you should not feel bound by the
method. Invent your own syntax (to be defined later), add auxiliary definitions, or search for a
complementary method.

The process of constructing a formal model of a system and formally characterizing the intended
correctness condition can lead to surprises. More than once in my work with Ph.D. students who
were formalizing the systems they were building, they had to back off from their expected and
desired correctness condition by realizing that it was too strong, not always guaranteed (e.g., not
guaranteed for some failure case or for a "fast-path" case), or only locally true (holds for a system
component but not the entire system). Correctness conditions for distributed systems are likely
to be weaker than expected or desired because of the presence of failures (nodes or links crashing)
and transmission delays; it is likely that there are "windows of vulnerability" during which the
correctness condition cannot be guaranteed.

Invariants

The most common way to characterize certain kinds of correctness conditions is as a state
invariant. An invariant is a property that does not change as the system goes from state to state.
Remember also:

• An invariant is just a predicate. If you define some appropriate assertion language, it is
usually not a big deal to express an invariant formally.

• "True" is an invariant of any system. It's the weakest invariant and hence not a very satisfying
one; you probably want to say something more interesting about your system. If "true" ends
up being your strongest invariant, revisit your system design.

• An invariant can serve multiple purposes. It is usually used to pare down a state space to
the states of interest. For example, it can be used to characterize the set of reachable states
or the set of acceptable/legal ("good") states. (These two sets are not always the same. For
example, you might want the set of acceptable states to be a subset of the set of reachable
ones.) Representation invariants are used to define the domain of an abstraction function,
used when showing that one system "implements" another [13].

• Different formal methods treat invariants differently. (See Implicit versus Explicit in Section
4 for an elaboration of this point.) Make sure you understand invariants in the context of
the formal method you are using.

• Hard questioning of system invariants can lead to radically new designs.

To illustrate the last point, consider this example from the garbage collection community. One
class of copying garbage collection algorithms relies on dividing the heap into two semi-spaces,
to-space and from-space; in one phase of these algorithms, objects are copied from from-space to
to-space [2]. Traditional copying garbage collection algorithms obey a "to-space invariant": The
user accesses objects only in to-space. Nettles and O'Toole observed that breaking this invariant
and maintaining an alternative "from-space invariant" (the user accesses objects only in from-
space) leads to simpler designs that are much easier to implement, analyze, and measure [17]. This
observation led to a brand new class of garbage collection algorithms.

Observable Behavior

Given that state invariants are a good way to characterize desired system properties, formalizing
the state transitions will allow you to prove that the invariants are maintained. When you specify
state transitions, what you are specifying is the behavior of the system as it interacts with its
environment, i.e., the system's observable behavior.

It might seem obvious that what you want to specify is the observable behavior of a system,
but sometimes when you are buried in the details of the task of specifying, you forget the bigger
picture. Suppose you take a state machine approach to modeling your system. Here is a general
approach to specifying observable behavior:

1. Identify the level of abstraction (see Section 4.1) at which you are specifying the system.
This level determines the interface boundary that you are specifying; it determines what is
or is not observable. For example, a bus error at the hardware level is not expected to be
an observable event in the execution of an text formatter like Word, but core dumped is
certainly an observable event when using a text editor like emacs.

2. Characterize the observable entities in a state at that given level of abstraction. These are
your state variables or objects. This step forces you to identify the relevant abstract types of
your system (See the section on Properties of State Entities below.)

3. Characterize a set of initial states, and if appropriate, a set of final states.

4. Identify the operations that can access or modify the observable entities. These define your
state transitions.

5. For each operation, characterize its observable effect on the observable state entities. For
example, use Z schemas, Larch interfaces, or VDM pre/post-conditions.

Observable behavior should include any change in state that is observable to the user. If you
are specifying an operation, then the kinds of observable state changes include changes in value
to state objects, observable changes in the store (new objects that appear and old objects that
disappear), objects returned by the operation, and signaled exceptions or errors.

Another way to think about observable behavior is to think about observable equivalence [15, 11,
10]. Ask "Can I distinguish between these two things?" where "things" might be states, individual
entities in a state, traces of a process, or behavior sets of a process, depending on what you are
specifying. If the answer is "yes," then there must be way to tell them apart (perhaps by using

unique names or perhaps by denning an equal operation); if "no," then there must not be any way
for the observer to tell them apart.

Properties of State Entities

The most important property to state of any entity in a system is its type. This statement
is true regardless of the fine distinctions between the different type systems that different formal
methods and specification (and programming) languages have. Since for a specification we are
not concerned about compile-time and/or run-time costs of checking types, there is never a cost
incurred in documenting the type of an entity in a specification.

Since a type can be viewed as an abbreviation for a little theory, declaring an entity's type is a
succinct way of associating a possibly infinite set of properties with the entity in one or two words.
A truly powerful abstraction device!

For entities that are "structured" objects (e.g., an object that is a collection of other objects),
when determining its type, the kinds of distinguishing properties include:

• Ordering. Are elements ordered or unordered? If ordering matters, is the order partial or
total? Are elements removed FIFO, LIFO, or by priority?

• Duplicates. Are duplicates allowed?

• Boundedness. Is the object bounded in size or unbounded? Can the bound change or it is
fixed at creation time?

• Associative access. Are elements retrieved by an index or key? Is the type of the index
built-in (e.g., as for sequences and arrays) or user-definable (e.g., as for symbol tables, hash
tables)?

• Shape. Is the structure of the object linear, hierarchical, acyclic, n-dimensional, or arbitrarily
complex (e.g., graphs, forests)?

For entities that are relations, the kinds of distinguishing properties include whether the relation
is a function (many-to-one), partial, finite, defined for only a finite domain, surjective, injective,
bijective, and/or any (meaningful) combination of these.

Finally, algebraic properties help characterize any relational entity or any function or relation
defined on a structured entity. The common algebraic properties include: idempotency, reflexivity,
symmetry, transitivity, commutativity, associativity, distributivity, existence of an identity element,
and existence of an inverse relation or function. Algebras are a well-known mathematical model for
both abstract data types and processes [8,15, 1]. For example, this algebraic equation characterizes
the idempotency of inserting the same element into a set multiple times:

insert(insert(s, e), e) = insert(s,e)

and this characterizes insert's commutativity property:

insert(insert(s,ei),e2) = insert(insert(s,e2),ei)

And, since processes can be viewed as denoting structured objects (e.g., sets of traces), it makes
sense to ask about whether algebraic properties hold for operations on processes. For example, for
CSP processes, parallel composition is both commutative and associative:

P\\Q = Q\\P
P\\(Q\\R) = (P\\Q)\\R

4. How to Specify?

Given that you understand why you are specifying and what it is you want to specify, in what ways
should you try to think about the system so that you can begin to specify and then make progress
in writing your specification? Not surprisingly, we rely on the tried and true techniques: abstraction
and decomposition. In specifying large, complex systems, abstraction is useful for focusing your
attention to one level of detail at a time; decomposition, for one small piece of the system (at a
given abstraction level) at a time. Both enable local reasoning.

4.1. Learn to Abstract: Try Not to Think Like a Programmer

The skill that people find the most difficult to acquire is the ability to abstract. One aspect of
learning to abstract is being able to think at a level higher than programmers are used to.

Try to think definitionally not operationally.

A student said the following to me when trying to explain his system design:

If you do this and then that and then this and then that, you end up in a good state.
But if you do this and then that and then this, you end up in a bad state.

Rather than thinking of what characterizes all good states, people find it easier to think about
whether a particular sequence of operations leads to a good or bad state. This operational approach
means ending up trying to enumerate all possible interleavings; this enumeration process quickly
gets out of control, which is typically when a student will come knocking at my door for help. This
problem is related to understanding invariants (see Invariants in Section 3). Invariably, the very
first thing I need to teach students when I work with them one-on-one is what an invariant is.

Try not to think computationally.1

When writing specifications abstraction is intellectually liberating because you are not bound
to think in terms of computers and their computations.

another way of saying the same thing as above.

The following predicate

s = s'~(e)

might appear in the post-condition of the specification of a remove operation on sequences. Here,
s stands for the sequence's initial value; s', its final value; e, the element removed and returned.
You most naturally might read "=" as assignment (especially if you are a C programmer) and not
as a predicate symbol used here to relate values of objects in two different states; you may need to
stare at these kinds of predicates for a while before realizing the assertional nature (and power) of
logic.

Try constructing theories, not just models.

Building models is an abstraction process; but defining a theory takes a different kind of ab-
straction skill. When you construct a model of a system in terms of mathematical structures like
sets, sequences, and relations, you get all properties of sets and relations "for free." This has
the advantage that you do not have to spell them out every time you specify a system, but the
disadvantage that some of those properties are irrelevant to your system. Thus, in a model-based
constructive approach, you also need to provide a way to say which properties about the standard
mathematical structures are irrelevant. (You might do this stripping away of properties in terms
of invariants.) For example, you might specify a stack in terms of a sequence, where the top of
the stack corresponds to one end of the sequence. Then, you need not only to state which end of
the sequence serves as the top of the stack, but also to eliminate some sequence properties, e.g.,
being able to index into a sequence or concatenate two sequences, because they have no relevance
for stacks.

Alternatively, in a theory-based approach you state explicitly exactly what properties you want
your system to have. Any model that satisfies that theory is deemed to be acceptable. For example,
the essence of stacks is captured by the well-known equations:

pop(push(s,e)) = s
top(push(s,e)) = e

Sequences, or any other particular mathematical structure, do not enter the picture at all.

Like many, you may find methods like Z and VDM appealing because they encourage a model-
based rather than theory-based approach to specification. You can build up good intuition about
your system if you have a model in hand. However, to practice learning how to abstract, try writing
algebraic or axiomatic assertions about the model.

4.2. How To Proceed: Incrementally

At any given level of abstraction, we ignore some detail about the system below. You might feel
anxious to specify everything for fear of being "incomplete." Learning to abstract means learning
when it is okay to leave something unspecified. This aspect of the abstraction process also allows

incremental specification. In any case, it is probably better to specify something partially than not

at all.

Here are four common and important examples of incremental abstraction techniques: (1) first
assume something is true of the input argument and capture this assumption in a pre-condition,
then weaken the pre-condition; (2) first handle the normal case, then the failure case; (3) first
ignore the fact that ordering (or no duplicates, etc.) matters, then strengthen the post-condition;
(4) first assume the operation is atomic, then break it into smaller atomic steps. Let's look in turn
at each of these examples in their generality and in more detail.

Use pre-conditions.

Putting your "programmers" cap on, think of pre-conditions in the context of procedure call.
A pre-condition serves two purposes: an obligation on the caller to establish before calling the
procedure and an assumption the implementor can make when coding the procedure.

More generally, pre-conditions are a way of specifying assumptions about the environment of
a system component. Thus, such assumptions can and should be spelled out and written down
explicitly, and in so doing, you can specify and reason about a piece of the system without having
to think about the entire system all at once. Thus pre-conditions enable partial specification,
incremental design, and local reasoning—all attractive means of dealing with the complexity of

large software systems.

One technical difficulty that trips some people is what it means or what happens if a pre-
condition is not met. In many specification techniques (like Z and Larch), when an operation's
pre-condition is not met, the interpretation is "all bets are off." The interpretation is that the
pre-condition is a disclaimer.2 In other words, the operation is free to do anything, including
not terminate, if the pre-condition does not hold. The technical justification is that when an
operation is specified using pre- and post-conditions, the logical interpretation of the specification

is an implication:

pre =>• post

When the pre-condition is "false" then the implication is vacuously true, so any behavior should

be allowed.

However, a stronger interpretation (e.g., taken by InaJo [18] and I/O automata [14]) is that
a pre-condition should be interpreted as a guard. No state transition should occur if the pre-
condition/guard is not met. Here the interpretation of a pre/post-condition specification is con-

junction:

pre A post

The difference is that under the disclaimer interpretation, for any state s in which the pre-condition
does not hold, the state pair, (s, s'), for any state s', would be in the state transition relation; under

2Thanks to Daniel Jackson for this term.

10

the guard interpretation, no such state pair would be in the relation.3

There are other possible interpretations: For example, if the pre-condition is not met, it could
mean that the state transition always goes to a special "error" state and termination is guaranteed,
or it could mean the state transition leads to either an "error" state or non-termination. The point
is that for the formal method you are using you should understand what it means both when a
pre-condition is met and not met.

Finally, in the presence of concurrency, an operation's pre-condition is usually interpreted as a
guard. More subtly, the predicate is evaluated in the state in which the operation begins executing,
not in the state in which the operation is called. Because of concurrency, a scheduler may delay
the start of the execution of an operation to some time after the call of the operation; since there is
time between the state in which the operation is called and the state in which it starts executing,
an intervening operation (executed by some other process) may change the system's state. Thus,
a predicate that holds in the state when the operation is called may no longer hold in the state
when the operation begins to execute. The point is to realize that in the presence of concurrency,
there may be a change in interpretation of pre-conditions. 4

Specify errors/exceptions/failures.

It is as important to specify erroneous or exceptional behavior as it is to specify normal behavior.
If an operation can lead to an undesired state, you should specify the conditions under which this
state is reachable. If you are lucky the specification language has some notational convenience
(e.g., Larch's signals clause) or prescribed technique (e.g., Z's schema calculus) to remind you to
describe error conditions; otherwise, handling errors may have to be disguised in terms of input or
output arguments that serve as error flags.

There is a close correlation between pre-conditions and handling errors. Z draws this connection
by advocating this convention using schema disjunction:

TotalOp = NormalOp V ErrorOp

where NormalOp is the specification (schema) of the Op operation under normal conditions,
and ErrorOp is the specification of Op under the condition in which the pre-condition (which must
be calculated [19] from NormalOp) does not hold. Thus, TotalOp gives the specification of Op
under all possible conditions.

Larch, on the other hand, draws the connection by advocating weakening the pre-condition,
e.g., defining it to be equivalent to "true," and correspondingly strengthening the post-condition.
Thus,

3 There is further confusion in interpreting pre-conditions in Z because even though you might write explicitly in
your schema the conjunction, xpre A post, where xpre is the "explicit" pre-condition, the meaning is the implication,
pre => post, where pre is the calculated pre-condition and usually not identical to xpre [5].

4Larch calls the guard a when-condition to distinguish it from the standard pre-condition written in a requires
clause.

11

Op = op()
requires P
ensures Q

turns into:

Op = op() signals (error)
requires true
ensures if P then Q else signal error

For interfaces to distributed systems, you cannot ignore the possibility of failure due to network
partitions or crashed nodes. You could abstract from the different kinds of failures by introducing
a generic "failure" exception that stands for errors arising from the distributed nature of your
system.

The two main points to remember are (1) in support of incremental specification, specify the
normal case and then handle the error cases, but (2) do not forget to handle the error cases!

Use nondeterminism.

Introducing nondeterminism is an effective abstraction technique. Nondeterminism permits
design freedom and avoids implementation bias.

Nondeterminism may show up in many ways. First, it may be inherent to the behavior of an
operation or object. Consider the choose operation on sets:

choose = op(s: set) returns (e: elem)
requires s ^ 0
ensures e £ s

The post-condition says that the element returned is a member of the set argument; it does not
specify exactly which element is returned.

Nondeterminism may result from explicit use of disjunction in a post-condition:

light = op() returns (c: color)
ensures c = red V c = amber V c = green

From a state machine model viewpoint (for instance when discussing deterministic and nonde-
terministic finite state automata), nondeterminism should not be confused with choice. Suppose 6
is a state transition relation,

6: State, Action -»• 2SiaU

Then an example of choice is:

<5(s,ai) = {t}
6(s,a2) = {u}

12

which says from state s you can either do the action ai (and go to the next state, t), or do the
action 02 (and go to the next state, u). However, an example of nondeterminism is:

<$(s,ai) = {t,u}

which says from state s you can do action ai and go to either state t or u.

Some formal methods for concurrent systems introduce their own notions of nondetermin-
ism/choice; for example, CSP has two operators, one for internal choice (n) made by the machine
and the other for external choice (□) made by the environment5. CCS has yet a different way to
model nondeterminism.

The two main points are that (1) nondeterminism is a useful and important way to abstract, but
(2) be careful to understand any given method's way of modeling nondeterminism and/or choice
to use it properly.

Use Atomic Operations

For any system it is important to identify what the atomic operations are. At any level of
abstraction an atomic operation may be implemented in terms of sequences of lower-level atomic
operations (e.g., a write operation to a file on disk might be implemented in terms of a sequence of
write operations to individual disk blocks). Even assignment can be broken down into sequences
of loads and stores to/from memory and registers.

For a sequential program, usually it is assumed that each procedure is executed atomically; this
assumption is rarely stated explicitly.

For a concurrent system, it is critical to state explicitly what operations are assumed to be
atomic. The atomicity of an operation, Op, guarantees that no other operation can interfere with
the execution of Op and that you can abstract away from any intermediate (lower-level) state that
the operation might actually pass through.

5. What to Write?

With your pen poised over a blank sheet of paper or fingers over your keyboard, you now face the
problem of what to write down. If you are using a specific formal method like Z, VDM, or Larch,
you must know the syntax and semantics of its specification language. It is not enough to know
what the syntactic features are; you need to understand what each means.

Also, embedded within any formal method is an assertion language, usually based on some
variation of first-order predicate logic. With assertions you nail down precisely your system's
behavior. It is in your assertions where the smallest change in syntax can have a dramatic change
in semantics. Getting the details of your assertions right is typically when you discover most of the
conceptual misunderstandings of your system's design.

5Hoare calls the former "nondeterministic or" and the latter "general choice."

13

It is important to understand the difference between syntax and semantics. For example, the
typical assertion language for algebraic specification languages gives grammatical rules for formu-
lating syntactically legal terms out of function and variable symbols. Each syntactically legal term
denotes a value in some underlying algebraic model. For example, the term, insert(insert(0, ei), e2)
is a syntactic entity that denotes the set value, {ei,e2}, which is a semantic entity. And so for a
standard model of sets, the syntactically different term insert(insert(0,e2),e1) denotes the same
semantic set value.

5.1. General Rules-of-Thumb

What typically distinguishes a formal method from mathematics is its methodological aspects, e.g.,
stylistic conventions. A specification written in the style of a given formal method is usually not just
an unstructured set of formulae. Syntactic features make it easier to read the specification (e.g,.
the lines in a Z schema), remind the specifier what to write (e.g., the modifies clause in Larch),
and aid in structuring a large specification into smaller, more modular pieces (e.g., Z Schemas,
Larch traits).

Implicit vs. Explicit

Most formal methods have well-defined specification languages so the choice of what you explic-
itly write down is guided by the grammar and constructs of the language.

However, there is a danger of forgetting the power of the unsaid. What is not explicitly stated
in a specification often has a meaning. A naive specifier is likely to be unaware of these implicit
consequences, thereby be in danger of writing nonsense. Here are three examples.

The first example is the frame issue. If you are specifying the behavior of one piece of the
system in one specification module, you should say what effects that piece has on the rest of the
system. In some formal methods (e.g., InaJo), you are forced to say explicitly what other pieces of
the system do not change (NC"):

NC"(xu...,xn)

This is sometimes impractical if n is large, or worse, if you do not or cannot know what the
xi,...,xn are in advance.

In some methods (e.g., Larch), you say only what may (but is not required to) change; anything
not listed explicitly is required not to change:

modifies yi,...,ym

This says y\...ym may change but the rest of the system stays the same.

Z's A and E operators on Schemas are similar to InaJo's NC construct; they allow you to make
statements local to individual operations about whether they change certain state variables or not.

14

Use of these schema operators on say the Schemas, Si, leaves implicit the invariant properties of
the system captured in Si. These properties can be made explicit by "unrolling" the Schemas S;.

This feature of Z is related to my second example of implicit vs. explicit specification, which
has to do with invariants. In some formal methods like Z, state invariants are stated explicitly.
They are a critical part of the specification, i.e., "property" component of a Z schema, and used to
help calculate operation pre-conditions. In others like Larch, they are implicit and must be proven,
usually using some kind of inductive proof rule. Finally, in others like VDM, they are redundant.
They are stated explicitly and contribute to the checklist of proof obligations generated for each
operation.

Finally, the third example has to do with implicit quantification. In many algebraic specification
languages the i equations in this list

ei

are implicitly conjoined and quantified as follows:

3/i... 3 /„ . V xi... V xm . ex A ... A e;

where f\...fn are the function symbols and Xi ... xm are the variables that appear in ex ■ ■. e;.

This kind of implicit quantification has subtle consequences. Consider the following (incorrect)
equational specification of an operation that determines whether one set is a subset of another:

*i Q s2 = (e G si =>• e e s2)

What you really mean is:

siCs2 = V e.(e € si => e G s2)

but in most algebraic specification languages, writing a quantifier in the equation is syntactically
illegal; the tipoff to the error is the occurrence of the free variable e on the righthand side of the
first equation.

Auxiliary Definitions

Do not be afraid to use auxiliary definitions:

• To shorten individual specification statements. For example, when argument lists to functions
get too long (say, greater than four), then it probably means the function being defined is
"doing too much."

15

• To "chunkify" and enable reuse of concepts. When a long expression (say, involving more
than two logical operators and three function symbols) appears multiple (say, more than two)
times, then it probably means that chunk of information can be given a name and the name
reused accordingly.

• To postpone specifying certain details. When you find yourself going into too much depth
while specifying one component of the system in neglect of specifying the rest of the system,
then introduce a placeholder term to be defined later.

Notation

You should not feel overly constrained by the specification notation. If there is a concept you
want to express and you cannot express it easily in the given notation, invent some convenient
syntax, say what you want, and defer giving it a formal meaning till later. Don't get stuck just
because your notation is restrictive. On the other hand, don't forget to define your inventions. It
may be at odds with the rest of the semantics. If you're lucky, however, you will have thought of
a new specification language construct that is more generally useful than for just your problem at
hand.

Proofs

Most likely you will not be proving theorems about your system from your specifications, but
if you are, the first difficult aspect about doing proofs is knowing how formal to be. For realistic
systems and/or large examples, it's impractical to do a completely formal proof, in the strictest
sense of "formal" as used in mathematical logic. What you should strive for when writing out an
informal proof is to justify each proof step where in principle the step could be formalized.

Given that you are doing only informal proofs, the second difficult aspect is knowing when you
can skip steps. Some steps are "obvious" but others are not. Also, what may seem "obvious" often
reflects a hole in your argument.

It is possible to do large formal proofs using machine aids like proof checkers and theorem
provers. There is of course a tradeoff between the effort needed to learn to use one of these tools
and its input language and underlying logic and the benefit gained by doing the more formal proof.
If what you are trying to prove is critical, it may pay to invest the time and energy; moreover, this
cost need be done only once, the first time. If you plan to do more than one (critical) proof, it
may be worth your while. Finally, using machine aids keeps you honest because they do not let
you skip steps.

Choosing the degree of formality and how much proof detail to give takes experience and prac-
tice, gained by both reading other people's proofs and constructing your own. A background in
mathematics usually helps.

There are common proof techniques that you should have in your arsenal: proof by induction,
case analysis, proof by contradiction, and equational reasoning (substituting equals for equals).
You should be familiar with natural deduction though you probably would use it for only small,
local proofs.

Finally, the familiar commuting diagram from mathematics plays a central role in proofs of

16

Figure 1: A Commuting Diagram

correctness for software systems. For example, an interpretation for Fig. 1 in the context of state
machines is to suppose that / is an action of a concrete machine on the concrete state x. If
(x,f,x') is a state transition of the concrete machine, then there exists an abstract action g such
that (A(x), g, A(x')) is a state transition of the abstract machine.

In the context of abstract data types, the interpretation is that given that x is a concrete repre-
sentation for y, the concrete function / implements the abstract function g under the abstraction
function A. That is,

A(f(x)) = g(A(x))

More elaborate diagrams, for example, that allow sequences of actions rather than single actions
generalize this basic idea. The "CLInc Stack" case study [3] of proving the correctness of the
implementation of a small programming language down to the hardware level relies fundamentally
on a stack of commuting diagrams.

5.2. The Details

I now turn to the nitty gritty of specification: getting the technical details right.

Logical Errors

Common logical errors that I have seen specifiers (including myself) make involve implication
and quantification.

Implication. Remember that false implies anything so that

false => ...

is vacuously true, and that anything implies true so that

... =>■ true

reduces to true.

17

Quantifiers. Problem spots include nested quantifiers, ordering of quantifiers (especially modal
operators for a temporal logic), and combining quantifiers and implication (e.g., what happens
to a formula when bringing a quantifier outside an implication). Another confusion arises when
qualifying a quantified variable with set membership, G. That is,

Vx e T.P(x)

translates to

Vx.xeT => P{x)

but

3x e T.P(x)

translates to

3x.x e T AP(x)

If you have a complicated predicate with a lot of embedded quantifiers, you may find it helpful
to break the predicate into pieces, where each piece is in prenex form and has only one or two
quantifiers.

Properties about sets, functions, and relations

When specifying objects such as sets, bags, and sequences that are collections of objects you
may be prone to making the following common errors.

Saying

x e s'

in the post-condition of an insert operation on sets may be too weak. It does not say that elements
in the set that were originally in s are still there.

Saying

s' = s — {x}

in the post-condition of a remove operation on sets is too weak. You need to say

s' = s — {x} Ax£s

18

since in the first case x may not be a member of s and the post-condition could hold by returning an
arbitrary value; moreover, the set would not change in value, probably not the intended behavior
for a remove operation.

Saying

s — s' = {x}

is also not strong enough. Here you need to add that s' is a proper subset of s:

s — s' = {x} A s' C s

since the first case allows s' to have extra elements.

Saying something like

/(choosers)) A g{choose(s))

in the post-condition of an operation where choose is not deterministic (i.e., not a function) is
weaker than saying

3 x . x = choose(s) A f(x) A g(x)

since in the first case the different occurrences of choose could return different values. Of course if
choose is a function, then it is guaranteed to return the same value.

Recursive definitions, commonly found in algebraic specifications, may at first look puzzling.
For example, in specifying the delete operation for sets

delete(insert(s,ei),e2) = if ex = e2 then deleters, e2)
else insert(delete(s, 62), ei)

a common error is to forget to reapply delete recursively if e\ and e2 are equal or to forget to
"reinsert" e\ if they are not.

6. Challenges for the Technical Community

There exist expressive enough logics to support most kinds of properties that software engineers
want to state of their systems, including temporal behavior (safety and liveness properties), real-
time behavior (hard and soft time constraints), and erroneous behavior (failures, exceptions, etc.).
So we are not lacking in the number and kinds of logics.

However, since no one logic is going to be the most appropriate for specifying all aspects of a
software system, one technical challenge for the mathematical logic community is to be able to use

19

different logics together. We might combine logics at the surface (syntactic) level or at the deeper
semantic level or at some level in between. We might translate different logics into a common logic.

A more pragmatic need is better and more sophisticated tools to help in the semantic analysis
of specifications. As tools increase in logical power, we can do more reasoning of more complex
and larger systems. For example, rewrite rule engines and similar tools that manipulate algebraic
(equational) specifications can only go so far; since more sophisticated logics are needed to describe
real systems, more sophisticated reasoning tools are needed. Analogous to the need for ways to
combine logics is the need to combine tools that support different logics and/or different proof
techniques. For example, investigating the combination of model checking and theorem proving
seems particularly promising and fruitful.

Finally, considering the subject of this paper, we still face the educational challenge of teaching
mathematical foundations like logic and discrete mathematics to practicing or aspiring software
engineers. We need to go beyond giving the traditional courses and think about who the target
students are (usually computer scientists and engineers); these new kinds of courses must make
direct connections between mathematical concepts and real software systems.

Acknowledgments

I thank David Garlan and Daniel Jackson for their feedback on an earlier draft of this paper, for
the fun discussions we have had on this topic, and for their collaboration on designing and teaching
the Models, Methods, and Analysis courses for the MSE program.

I thank all the students with whom I have worked over the years for their interest and patience
in trying their hand at formal specification.

References

[1] DIS 8807. Information systems processing-open systems interconnection-lotos. Technical
report, International Standards Organization, 1987.

[2] H. G. Baker. List Processing in Real Time on a Serial Computer. Communications of the
ACM, 21(4):280-294, 1978.

[3] W.R. Bevier, W.A. Hunt, Jr., J S. Moore, and W.D. Young. An approach to systems verifi-
cation. Journal of Automated Reasoning, 5:411-428, 1989.

[4] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transactions on
Computer Systems, 8(l):18-36, February 1990.

[5] D. Garlan. Preconditions for understanding. In Proceedings of the Sixth Int'l Conf on Software
Specification and Design, pages 242-245, October 1991.

[6] D. Garlan, G. Abowd, D. Jackson, J. Tomayko, and J.M. Wing. The CMU Master of Soft-
ware Engineering Core Curriculum. In Proceedings of the Eighth SEI Conference on Software
Engineering Education (CSEE). Springer-Verlag, 1995.

20

[7] D. Garlan, A. Brown, D. Jackson, J. Tomayko, and J. Wing. The CMU Masters in Software
Engineering Core Curriculum. Technical Report CMU-CS-93-180, Carnegie Mellon Computer
Science Department, August 1993.

[8] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.

[9] J.J. Horning, J.V. with S.J. Garland Guttag, K.D. Jones, A. Modet, and J.M. Wing. Larch :
Languages and Tools for Formal Specification. Springer-Verlag, New York, 1993.

[10] C.B. Jones. Systematic Software Development Using VDM, chapter 15. Prentice-Hall Inter-
national, 1986.

[11] Deepak Kapur. Towards a theory of abstract data types. Technical Report 237, MIT LCS,
June 1980. Ph.D. Thesis.

[12] B. Lampson, W. Weihl, and U. Maheshwari. Principles of computer systems. Technical Report
MIT/LCS/RSS-22, MIT Lab. for Comp. Science, 1993. Lecture Notes for 6.826, Fall 1992.

[13] B. Liskov and J. Guttag. Abstraction and Specification in Program Development. McGraw-
Hill/MIT Press, 1986.

[14] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. Technical
report, MIT Laboratory for Computer Science, Cambridge, MA, April 1987.

[15] A.J.R.G. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.

[16] L. Mummert, J.M. Wing, and M. Satyanarayanan. Using belief to reason about cache coher-
ence. In Proceedings of the Symposium on Principles of Distributed Computing, pages 71-80,
August 1994. Also CMU-CS-94-151, May 1994.

[17] Scott M. Nettles and James W. O'Toole. Real-Time Replication Garbage Collection. In
SIGPLAN Symposium on Programming Language Design and Implementation. ACM, June
1993.

[18] John Scheid and Steven Holtsberg. Ina Jo specification language reference manual. Technical
Report TM-6021/001/06, Paramax Systems Corporation, A Unisys Company, June 1992.

[19] J.M. Spivey. Introducing Z: a Specification Language and its Formal Semantics. Cambridge
University Press, 1988.

21

